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This article presents an analytical and experimental study of magnetohydrodynamic
Rayleigh–Bénard convection in a large aspect ratio, 20 : 10 : 1, rectangular box. The
test fluid is a eutectic sodium potassium Na22K78 alloy with a small Prandtl number
of Pr ≈ 0.02. The experimental setup covers Rayleigh numbers in the range 103 <
Ra < 8×104 and Chandrasekhar numbers 0 6 Q 6 1.44×106 or Hartmann numbers
0 6M 6 1200, respectively.

When a horizontal magnetic field is imposed on a heated liquid metal layer, the
electromagnetic forces give rise to a transition of the three-dimensional convective roll
pattern into a quasi-two-dimensional flow pattern in such a way that convective rolls
become more and more aligned with the magnetic field. A linear stability analysis
based on two-dimensional model equations shows that the critical Rayleigh number
for the onset of convection of quasi-two-dimensional flow is shifted to significantly
higher values due to Hartmann braking at walls perpendicular to the magnetic field.
This finding is experimentally confirmed by measured Nusselt numbers. Moreover,
the experiments show that the convective heat transport at supercritical conditions is
clearly diminished. Adjacent to the onset of convection there is a significant region
of stationary convection with significant convective heat transfer before the flow
proceeds to time-dependent convection. However, in spite of the Joule dissipation
effect there is a certain range of magnetic field intensities where an enhanced heat
transfer is observed. Estimates of the local isotropy properties of the flow by a four-
element temperature probe demonstrate that the increase in convective heat transport
is accompanied by the formation of strong non-isotropic time-dependent flow in the
form of large-scale convective rolls aligned with the magnetic field which exhibit a
simpler temporal structure compared to ordinary hydrodynamic flow and which are
very effective for the convective heat transport.

1. Introduction
When a magnetic field is imposed on a heated liquid metal layer, Joule dissipation

strongly damps the convective motions if three-dimensional convective flow patterns
are present. This has already been demonstrated in our previous investigations of the
effect of a purely vertical magnetic field on heat transfer (see Burr & Müller 2001).
However, if a magnetic field is imposed in a purely horizontal direction and if the
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electromagnetic forces are strong compared to inertial ones, the flow undergoes a
reorganization towards two-dimensional convective rolls aligned with the magnetic
field and with considerably less Joule dissipation. This effect has already been discov-
ered by Chandrasekhar (1961) in his linear stability analysis of an infinitely extended
horizontal layer heated from below. He states that for a magnetic field inclined to-
wards the direction of gravity, convection at marginal stability will be manifested
as longitudinal rolls aligned with the horizontal component of the magnetic field,
whereas a delayed onset of convection results from the vertical component of the
magnetic field only. Even for large supercritical conditions the two-dimensional struc-
ture of the flow is maintained as demonstrated in the experiments of Lehnert &
Little (1956), Fauve, Laroche & Libchaber (1981) Fauve et al. (1984) and Kishida
& Takeda (1994). The dynamics of the process are essentially the same as those for
the formation of purely two-dimensional or quasi-two-dimensional magnetohydro-
dynamic (MHD) turbulence in duct flows and can be explained by applying the basic
principles of MHD flow to single, isolated vortices. Davidson (1995) shows for the
limiting case of high Reynolds numbers Re = v0a/ν and small magnetic Reynolds
numbers Rm = µσv0a that the component of angular momentum aligned with the
magnetic field is conserved, whereas components non-aligned with the magnetic field
are removed on a fast time scale. The Lorentz force elongates vortices along the
field lines and thereby Joule dissipation is continuously reduced. As a consequence,
a purely two-dimensional flow is established, provided that this is consistent with
the boundary conditions and that inertial forces are not destabilizing the flow. In
purely two-dimensional flow the current density and with it electromagnetic forces
vanish and the flow is governed by two-dimensional hydrodynamics (see Burr et al.
2000). However, a purely two-dimensional state can only be obtained in an infinite
fluid domain. If the fluid is confined by walls perpendicular to the magnetic field,
the vortices, i.e. the convective rolls, have to match the non-slip boundary condition
at these so-called Hartmann walls and a quasi-two-dimensional flow develops. In
figure 1(a) the geometry of Rayleigh–Bénard convection and the anticipated flow
pattern of quasi-two-dimensional convective rolls is sketched. An electrically well
conducting fluid (e.g. liquid metal) is confined between two horizontal walls which
are separated by a height h and which are considered to be perfect thermal and
electrical conductors. By heating the lower and cooling the upper wall a temperature
difference ∆T is maintained parallel to the acceleration due to gravity g and if the
temperature difference exceeds a critical value, a buoyant convective motion is estab-
lished. A homogeneous magnetic field may be imposed on the layer in the horizontal
x-direction. In the horizontal z-direction the layer is assumed to be of infinite extent
whereas in the direction of the magnetic field the fluid domain is limited by two
thin electrically conducting Hartmann walls separated by a distance 2b, where s is
the thickness of the wall material of electrical conductivity σW . Consistent with the
common notation in MHD flows the horizontal walls aligned with the direction of
the magnetic field and the adjacent boundary layers are called sidewalls and side
layers, respectively.

In quasi-two-dimensional MHD flows the velocity distribution v(x) is uniform in
the direction of the magnetic field over a core region that covers the major part of the
fluid domain. At the Hartmann walls the core velocity matches the non-slip boundary
condition by formation of thin Hartmann boundary layers. Figure 1(b) shows the
anticipated current paths in a periodic sequence of counter-rotating convective vortices
in the horizontal centreplane and in a vertical plane perpendicular to the magnetic
field. Depending on the sense of rotation, electric currents j are induced radially out
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Figure 1. Quasi-two-dimensional magnetohydrodynamic flow at high magnetic fields in
Rayleigh–Bénard convection. (a) Geometry and flow pattern of convective rolls aligned with
the magnetic field. (b) Closure paths of the electric currents.

from or in towards the convective vortices, as it is seen from the vertical cut. Thus the
centres of rotation of two adjacent vortices are connected by current paths through
the fluid or via the electrically conducting sidewalls. Due to the reduced circulating
velocity in the Hartmann boundary layer, the induced electric potential differences
are smaller at the Hartmann walls. Therefore, the electric currents close along the
direction of the magnetic field through the centre regions of two counter-rotating
vortices via the Hartmann layers and the Hartmann walls, provided the latter are
electrically conducting.

In the core region the Lorenz forces F L = j × B are directed opposite to the
convective motions whereas at the Hartmann walls their direction is reversed and
the fluid is accelerated. This renders the Hartmann layers very thin and thereby,
together with conducting Hartmann walls, they govern the current density and with
it the damping of velocity in the core region. The energy removed from the core
region is dissipated by Joule dissipation in the Hartmann walls and by Joule and
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viscous dissipation in the Hartmann layers. The dissipative effect of the Hartmann
walls and layers is called Hartmann braking and is well known in duct flows (see
e.g. Sommeria & Moreau 1982 and Bühler 1996). We shall see later (§ 4) that it
delays the onset of convection which does not happen for horizontally infinite layers.
Therefore, this study is focused on the role of Hartmann walls on the convective
flow and the extension of established models, valid for duct flows, to the problem of
magnetoconvective flows with strong external magnetic fields. The paper is organized
as follows:

In § 2 the general MHD equations, their scaling and the dimensionless numbers
are presented. The model equations of quasi-two-dimensional natural convective flow
are derived in § 3. In § 4 a linear stability analysis is performed. A brief outline of
the experimental setup is given in § 5 and in § 6 experimental results are presented
with an outline of general features, a discussion of integral flow properties and an
investigation of the specific temporal structure of the flow. In § 7 the results are
summarized and some conclusions are drawn.

2. Governing equations and relevant dimensionless numbers
MHD flows for engineering conditions are described well by the limiting case of

small magnetic Reynolds numbers Rm � 1 with Rm = µσv0a representing the ratio
of the magnetic field induced by the fluid motion to the externally applied magnetic
field. Here µ is the magnetic permeability, σ is the electrical conductivity of the fluid,
v0 a characteristic velocity and a a characteristic length. For this and the Bousinesq
assumption the buoyant flow of a Newtonian fluid is governed by the following set
of dimensionless equations:

mass, momentum and charge conservation

∇ · v = 0, (1)

1

Pr

[
∂v

∂t
+ (v · ∇)v

]
= −∇p∗ + ∇2v + RaT ey + Qj × B, (2)

∇ · j = 0. (3)

Ohm’s law

j = −∇φ+ v × B; (4)

heat transport equation

∂T

∂t
+ (v · ∇)T = ∇2T . (5)

In these equations x = (x, y, z), v = (u, v, w), j = (jx, jy,jz), B = (bx, by, bz), φ, t and T
denote the dimensionless coordinates, velocity, current density, magnetic field, electric
potential, time and temperature, obtained by introducing the scales h, v0 = κ/h, σv0B,
B, hv0B, t0 = h2/κ and ∆T , where h is the height of the layer, v0 a characteristic
velocity, B the reference intensity of the applied magnetic field, t0 a characteristic time
scale (here the thermal diffusion time), and ∆T = Tb − Tt the temperature difference
between the lower and the upper fluid–wall interface temperatures Tb and Tt. The
thermal diffusivity κ = λ/ρcp is defined from the thermal conductivity λ, the density ρ
and the specific heat capacity cp, p

∗ = h2(p+ ρgh)/(ρνκ) is the dimensionless pressure
with ν representing the kinematic viscosity and ey is the unit vector directed opposite
to the gravity vector of magnitude g.



Rayleigh–Bénard convection in liquid metal layers 349

MHD natural convective flow is characterized by three independent dimensionless
groups: the Rayleigh number

Ra =
βg∆Th3

νκ
, (6)

where β is the cubic thermal expansion coefficient, the Prandtl number

Pr =
ν

κ
, (7)

and the Chandrasekhar number

Q = M2 =
B2h2σ

ρν
, (8)

which is the square of he Hartmann number M commonly used in MHD duct flows.
In MHD flows the electrical properties of walls have significant influence. They are

taken into account by the wall conductance ratio

c =
σWs

σb
, (9)

where σW is the electrical conductivity of the wall material, s is the thickness of the
wall and b is the half-width of the flow region in the direction of the magnetic field.
If c� 1, the thin wall condition (Walker 1981)

−c∇2
t φ = j · n (10)

is valid, where n is the unit vector perpendicular to the wall and ∇2
t is the two-

dimensional Laplace operator perpendicular to n. We will see in the next section that
for quasi-two-dimensional flow in high magnetic fields only the wall conductance ratio
of the Hartmann walls cH has significant influence on the flow. If three-dimensional
flow patterns are present the wall conductance ratio of the sidewalls cs may have an
additional significant influence on the flow.

3. Formulation of two-dimensional equations
To describe quasi-two-dimensional MHD flow in ducts two-dimensional model

equations have been derived by several authors (see e.g. Sommeria & Moreau 1982;
Verron & Sommeria 1987; Bühler 1996). The basic idea of these model equations
is to integrate the Hartmann braking effect at walls perpendicular to the magnetic
field into a two-dimensional formulation of the flow in the core region. As quasi-
two-dimensional natural convection has been found to occur in several experiments
(see § 1) the formulation of two-dimensional model equations for natural convective
flows seems justified. Moreover, buoyant flows have much longer time scales than
duct flows and thus allow a fast formation of quasi-two-dimensionality out of a
three-dimensional state.

Only a brief outline of the quasi-two-dimensional formulation of MHD flow will
be given here with emphasis on the role of buoyant forces and the presence of walls
aligned with the magnetic field. For a detailed formulation for non-buoyant flows see
Bühler (1996).

By taking the curl of the momentum equation (2) the transport equation of vorticity
Ω = ∇× v is obtained:

∂tΩ+ (v · ∇)Ω− (Ω · ∇)v = Pr∇2Ω+ RaPr∇× (T ey) + QPr∂xj . (11)
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The short forms ∂t and ∂x denote the partial derivatives with respect to t and x
respectively or any other property. In a quasi-two-dimensional flow, with the magnetic
field in the x-direction, the velocity field can be expressed by

u = 0, v = −∂zψ(y, z)f(x), w = ∂yψ(y, z)f(x), (12)

where ψ(y, z) is a two-dimensional stream function defined as v = −∂zψ and w = ∂yψ
and f(x) is a shape function that has to satisfy the non-slip conditions at the
Hartmann walls f(x = ±b) = 0 and the symmetry condition ∂xf(x = 0) = 0; b is used
in dimensionless form scaled with the layer height. In order to justify this form of
the velocity field, the flow variables in the core region, denoted by a subscript c, must
be uniform in the direction of the magnetic field and the thickness of the Hartmann
layer has to be independent of the core variables to the main order of approximation.
These two requirements are met if the electromagnetic forces dominate the momentum
equation, i.e. if for very large values of Q (i.e. Q→∞)

Ra/Q� 1 (13)

and generally also

PrQ� 1 (14)

for the case of Pr � 1, considered here.† In this case equation (11) reveals a very
weak variation of the electric current along the magnetic field, i.e. the order relation

∂xjc ' 0, (Ra/Q, P rQ)→ 0 (15)

holds. Taking the curl of equation (11) and introducing the curl of equation (4), we
also obtain

∂xxvc ' 0, (Ra/Q, P rQ)→ 0 (16)

Using the symmetry conditions at x = 0 we obtain from equations (15) and (16)
equivalent relations

∂xφc ' 0 (17)

and

uc = ∂xvc = ∂xwc ' 0. (18)

Equation (17) states that the electric potential in the core region does not vary along
the magnetic field lines to the order Ra/Q and (PrQ)−1. According to Ohm’s law
(equation (4)) this can only be satisfied if the current density in the direction towards
the Hartmann layers remains small. This is satisfied well for a single vortex embedded
in a fluid domain which is infinite in the directions perpendicular to the vortex axis.
When sidewalls parallel to the magnetic field are present side layers are formed and
due to their limited thickness the electric potential may vary significantly along the
direction of the magnetic field, if the sidewalls are non- or only poorly electrically
conducting. If we assume the sidewalls to be perfect electrical conductors, i.e. if cs →∞
can be justified from equation (9), potential gradients in the boundary layer along
these walls are equalized and the electric potential becomes uniform, consistent with
equation (17). The electric currents enter the sidewalls and can close via the Hartman
layers without an additional resistance and the dissipation remains governed by
the quasi-two-dimensional damping effect. Therefore, perfectly conducting sidewalls
strongly support the validity of this quasi-two-dimensional formulation. Moreover,

† The condition PrQ � 1 is not relevant for the linear stability analysis outlined in § 4. It is
stated here for the general nonlinear quasi-two-dimensional problem.
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for the current paths suggested in figure 1(b) equation (17) is also satisfied for the case
of poorly conducting or even insulating sidewalls since the electrical currents close
along the direction of the magnetic field via the core regions of two counter-rotating
vortices and therefore are not influenced by the presence of sidewalls. However, as
the thickness of the side layers is larger at smaller magnetic fields the side layers may
significantly influence the flow in the core region at small Chandrasekhar numbers.

With the above boundary conditions the shape function of the quasi-two-
dimensional flow f(x) is calculated as a solution of Hartmann’s problem (see Bühler
1996) as

f = 1− exp[Q1/2(x− b)]. (19)

This relation shows that the Hartmann layers are very thin, O(Q−1/2). Therefore
deviations from a two-dimensional temperature field are removed on a fast time
scale by heat diffusion along the x-direction (see figure 1a) and the temperature
field becomes uniform along the magnetic field lines.† This justifies describing the
temperature field in the core region by the two-dimensional heat transport equation
in the form

∂tT + v∂yT + w∂zT = ∇2
yzT . (20)

Consistent with the analysis for duct flows the equations of motion and for the
electric currents are integrated in the x-direction by using the thin wall condition (10)
for uniform conductivity of the Hartmann walls and the boundary and symmetry
conditions ∂xf(x = b) = −Q1/2 and ∂xf(x = 0) = 0. Thus, terms O(Q−1) are neglected.
Furthermore, the reduced mass flow rate in the Hartmann layers is neglected by the

use of approximation
∫ b

0
f(x)dx = b. The whole procedure finally results in a set of

two-dimensional equations of the form

1

Pr
[∂tω + ∂yψ∂zω − ∂zψ∂yω] = ∇2

yzω − Ra∂zT − ω

τ
, (21)

with

1

τ
=
Q1/2

b
+

QcH

b+ cH
(22)

and

∇2
yzφ =

b

b+ cH
ω, (23)

where ω = ∂yw − ∂zv is the component of vorticity aligned with the magnetic field.
Together with equation (20) these expressions describe the quasi-two-dimensional
natural convection flow in the core region. The influence of the magnetic field on the
flow by the effect of Hartmann braking is given by the last term of equation (21).
The similarity parameter τ is the dimensionless decay time of quasi-two-dimensional
flow by Joule dissipation. For electrically insulating Hartmann walls (cH → 0) the
damping effect shows the asymptotic limit 1/τ ∼ Q1/2 whereas for electrically well
conducting Hartmann walls (cH → ∞) 1/τ ∼ Q determines the damping of vorticity.
Equation (23) gives the relation between the electric potential and the vorticity in the
core region.

† Next to distant sidewalls of a plane, finite heated layer there is always a small lateral region
of the order of the layer height, where the overall convective flow is influenced by temperature
inhomogeneities due to kinematic and thermal boundary conditions at the side walls. In our case,
of an aspect ratio 1 : 10 : 20, these effects can be neglected with regard to the quasi-two-dimensional
core region. For a detailed discussion see Wesfreid, et al. (1978).
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Equations (20)–(23) are particularly useful to describe stationary flows because in
this case the formation time for quasi-two-dimensionality need not be considered.
Nevertheless, the conditions (13) and (14) must hold. Since the flow is buoyancy
driven the condition Ra/Q� 1 is the most restrictive assumption to be satisfied. We
will show in the next section that buoyant flow exists even in this limit.

4. Linear stability analysis
The presence of the magnetic damping term in equation (21) indicates a significant

influence of Hartmann braking on the onset of convection. Considering a flow
configuration such as sketched in figure 1 the critical Rayleigh number Rac for
the onset of quasi-two-dimensional stationary convection is obtained from a linear
stability analysis of the model equations derived in § 3. It is assumed that the horizontal
boundaries are impermeable and perfect conductors for heat and currents.

Introducing flow variables as a sum of a basic state denoted by subscript 0 and
a disturbance denoted by prime, e.g. ψ = ψ0 + εψ′ where ε is a small parameter,
the governing equations of quasi-two-dimensional flow (20)–(23) are linearized by
neglecting terms O(ε2). As the state of pure heat conduction is defined by T0 = −y
and ψ0 = 0, the disturbance of the temperature field in the linearized vorticity equation
is eliminated and we obtain

0 = ∇6
yzψ

′ − Ra∂zzψ′ − 1

τ
∇4
yzψ

′. (24)

For a layer infinitely extended in the z-direction a periodic Ansatz of the form

ψ′(y, z) = ψ′(y) exp(iaz) (25)

can be chosen, where a is the horizontal wavenumber. Introducing (25) into equation
(24) we obtain the linearized ordinary differential equation

(dyy − a2)3ψ′(y)− 1

τ
(dyy − a2)2ψ′(y) = −Raa2ψ′(y) (26)

which defines the marginal state for the onset of convection as a stationary motion.
The additional stiffness introduced by Joule dissipation of quasi-two-dimensional flow
is represented by the second term on the left-hand side of equation (26).

If we assume for simplicity that both horizontal boundaries are free the basic odd
mode

ψ(y) = cos(πy) (27)

which satisfies slip conditions at the boundaries y = 0 and y = 1 can be choosen
as a solution in the interval 0 < y < 1. Inserting this mode in equation (26) gives a
solvability condition F(Ra, a) = 0 which results in the critical wavenumber

ac =
π

2

√√
ξ2 + 8ξ − ξ, ξ = 1 +

1

π2τ
, (28)

and the critical Rayleigh number

Rac =
(π2 + a2

c)
3 + 1/τ(π2 + a2

c)
2

a2
c

(29)

for onset of convection. In figures 2(a) and 2(b) the critical wavenumber and the
corresponding critical Rayleigh number are plotted versus the decay time 1/τ of
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Figure 2. (a) Critical wavenumbers ac and (b) critical Rayleigh numbers Rac for the onset of
stationary quasi-two-dimensional convection in the pressence of Hartmann walls perpendicular to
the magnetic field. The influence of the magnetic field is expressed by the inverse of the dimensionless
decay time 1/τ = Q1/2/b + QcH/(b + cH ). The curves labelled free–free represent values obtained
for slip conditions at both horizontall walls whereas curves labelled rigid–rigid represent values
obtained for non-slip conditions at both horizontal walls. The curves ac = π and Rac = 4π2/τ
represent the asymptotic case of inviscid flow.

quasi-two-dimensional flow. The critical wave number increases from the value for
purely hydrodynamic flow ac(1/τ→ 0) = π/21/2 continuously to the asymptotic value
at high electromagnetic damping ac(1/τ → ∞) = π. In the same way, the critical
Rayleigh number increases monotonically from Rac(1/τ → 0) = 27π4/4 and finally
approaches a linear asymptotic law. This asymptotic behaviour can be derived by
neglecting the effect of viscous friction, described by the first term in equation (26).
Since ac(1/τ→∞) = π we obtain from (29)

Rac =
4π2

τ
, (30)

which is consistent with the findings of Horton & Rogers (1945) and Lapwood (1948)
for convection in a porous medium where friction is accounted for by Darcy’s law
only.

If both horizontal boundaries are rigid and non-slip conditions hold, the critical
values are obtained by expanding ψ′(y) into a Fourier series of the form

ψ(y) =
∑
m

Am cos[(2m+ 1)πy] (31)

and solving equation (26) by a Galerkin method. Results of this procedure are
also plotted in figures 2(a) and 2(b). The critical Rayleigh numbers increase from
the value at hydrodynamic flow Rac(1/τ → 0) = 1708 and match at large 1/τ
the asymptotic behaviour of inviscid flow. The critical wave numbers exhibit an
unexpected behaviour. The values first increase from the limiting value of purely
hydrodynamic flow ac(1/τ → 0) = 3.117, develop a maximum value of about ac ≈
3.4 at 1/τ ≈ 60, and then decrease for increasing magnetic field intensities to the
asymptotic value of the inviscid case ac = π.

5. Experimental setup and performance
A detailed description of the test section is given by Burr & Müller (2001). The test

apparatus provides a confined liquid metal layer of large aspect ratio 1 : 10 : 20 and
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a height of h = 20 mm. Eutectic sodium-potassium alloy Na22K78, with 22% weight
sodium and 78% weight potassium, was chosen as a test fluid. The temperature-
dependent thermophysical properties are calculated based on fitting curves derived
from data taken from O’Donnell, Papanicolaou & Reed (1989), Lyon (1952) and
Foust (1972). Due to technical peculiarities of the experimental setup the mean
temperature of the test fluid increases with increasing Rayleigh numbers. Moreover
the Prandtl number varies in the range 0.017 < Pr < 0.021 because of the temperature
dependence of the physical properties. The Hartmann walls as well as the side walls
aligned with the direction of the magnetic field are 1.5 mm thick stainless steel
sheets. As the thermal conductivity of stainless steel is even lower than the thermal
conductivity of NaK the vertical walls may be considered as isothermal and do not
impose a linear temperature gradient on the fluid. With the electrical conductivities
σss = 1.37× 106 Ω−1 m−1 and σ = 2.47× 106 Ω−1 m−1 of stainless steel and NaK we
obtain from equation (9) the small wall conductance ratio cH = 4.15 × 10−3 of the
Hartmann and the vertical sidewalls. Both horizontal walls are copper plates of 20 mm
thickness and with the electrical conductivity σCu = 5.8 × 107 Ω−1 m−1 of copper we
obtain from equation (9) cS = 4.5. Therefore the horizontal sidewalls meet to a good
approximation the requirements of perfect thermal and electrical conductivity made
in §§ 3 and 4.

The lower copper plate is electrically heated with a maximum power of P ≈ 11 kW
which results in Rayleigh numbers up to Ra ≈ 8 × 104. The test section is placed
into the magnetic bore of a superconducting solenoid magnet which generates a
horizontal magnetic field of up to 3.5 T and a homogeneity better than ∓4%. In
this investigation tests were conducted only in the range of Chandrasekhar numbers
0 6 Q 6 1.44× 106 or Hartmann numbers 0 6M 6 1200.

In figure 3 the geometry and instrumentations of the experimental setup are shown.
The longer side of the test section is orientated parallel to the magnetic field B. The
temperature difference across the layer ∆T = Tb − Tt and the mean temperature of
the fluid Tm = (Tb + Tt)/2 are evaluated from the five temperatures Ti,j in each wall
as a spatial and temporal average. The magnitude of the heat flux q supplied to the
layer is known from the measurement of the electrical heating power. With known q
the convective heat transport is expressed by the Nusselt number

Nu =
q

λ∆T/h
. (32)

Physical properties as well as characteristic numbers are evaluated as temporal mean
values only and therefore averaging is not indicated further.

The measurement of local time-dependent properties is facilitated by a four-element
temperature probe which can sense the fluctuating parts T ′P of temperature TP and
∇T ′P of the temperature gradient ∇TP = (∂xTP , ∂yTP , ∂zTP ). The latter measurement
is facilitated by a non-coplanar arrangement of four thermocouples each of 0.25 mm
diameter (for details see Burr & Müller 2001).

As a measure for the intensity of the temperature fluctuations the variance of the
temperature

T ′2P =
1

tm

∫ tm

0

T ′2P dt, (33)

is evaluated, where tm is a sufficiently long time interval. An estimate of the integral
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time scale τI of the flow is obtained from

τI =
2π

t0

∫ tI

0

A(t)dt, (34)

where A(t) is the autocorrelation function of the temperature signal normalized with

T ′2P , tI the time shift where A(t) becomes zero, and t0 = h2/κ ≈ 15.5 s is the thermal
diffusion time that renders τI dimensionless.

From the ratio between the variances of the horizontal temperature gradients
(∂xTP )′2 and (∂zTP )′2 the horizontal isotropy coefficient

Axz =
(∂xTP )′2

(∂zTP )′2
(35)

is defined as a measure for the local isotropy property of the flow. If Axz approaches
unity, the flow may be called horizontally isotropic. This situation can be expected
for a heated infinite layer in the case of no electrodynamic forces. If a quasi-two-
dimensional, time-dependent flow is established under the effect of a strong horizontal
magnetic field, the quasi-two-dimensional velocity field will render the temperature
distribution quasi-two-dimensional as well and therefore ∂xT

′
P ≈ 0 holds in the core

region. Thus, for quasi-two-dimensional flow Axz approaches zero and it is reasonable
to expect the trend towards a two-dimensional velocity field from decreasing values
of the horizontal isotropy coefficient.
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Figure 4. Critical Rayleigh number Rac and the magnetic damping parameter 1/τ obtained from
a stability analysis (§ 4) of the two-dimensional-model equation (§ 3) as a function of the Hartmann
number M. The dots mark the experimentally realized Hartmann numbers M = 200, 400, 600 and
800. The experimentaly obtained critical Rayleigh numbers for onset of convection as stationary
motion Rac,e and for onset of time-dependent flow Rat are plotted as squares and stars.

6. Experimental results
6.1. General observations

The range of experimentally feasible convection states and the magnetic damping
effect of the test chamber is displayed in figure 4, where the critical Rayleigh number
Rac and the magnetic damping parameter 1/τ are plotted as a function of the square
root of the Chandrasekhar number Q1/2, i.e. the Hartmann number M that will, for
convenience, be used in the following to denote the intensity of the magnetic field.
The other curves are the result of the stability analysis of § 4 and the graph for the
magnetic damping parameter 1/τ results from the formulation of the two-dimensional-
model equation (21) in § 3. The highest experimentally achievable Rayleigh number
Ramax ≈ 8 × 104 is marked in figure 4 by a horizontal straight line and the feasible
supercritical convective state lies between the curve of marginal stability at the lower
side and the maximum Rayleigh number Ramax from above. The graph in figure 4
will be used later for the discussion of the experimental results.

To investigate the basic features of the natural convective flow under the influence
of a horizontal magnetic field we apply in a first series of experiments a fixed heat
flux of magnitude q = 2.8 × 104 W cm−2 to the layer and increase the magnetic field
from the pure hydrodynamic case given by M = 0 up to M = 1200 and wait for
the test facility to overcome transient effects before the measurements are started. We
choose as typical integral flow quantities to characterize the MHD natural convection
the heat transfer in terms of Nusselt number Nu, the mean driving temperature
difference in terms of Rayleigh number Ra, the variances of temperature fluctuations

T ′2P recorded by the probe, the integral time scale τI and the horizontal isotropy
coefficient Axz . In figure 5 these characteristic integral flow properties are plotted
versus the Hartmann number M.

When the external magnetic field is applied to the heated liquid metal layer and
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Figure 5. Influence of increasing the Hartmann number M on relevant integral flow quantities at
constant heat flux q = 2.8 × 104 W m−2. (a) Nusselt numbers Nu. (b) Rayleigh numbers Ra. (c)

Variances of the temperature T ′2P in the fluid measured by the probe. (d ) Integral time scale of the
flow τI and diffusion time of vorticity along magnetic field lines τD scaled with the thermal diffusion
time t0. (e) Horizontal isotropy coefficient Axz .

gradually increased to large intensities the convective heat transfer generally decreases
because of the increased Joule dissipation at higher magnetic field intensities. As a
consequence the Nusselt numbers plotted in figure 5(a) decrease asymptotically for
strong magnetic fields until, in the present case for M ≈ 1200, the value Nu = 1 is
achieved indicating a state of pure heat conduction. However, the Nusselt number
does not decrease monotonically for increasing Hartmann numbers. In an intermediate
range between M ≈ 200 and M ≈ 400 the convective heat transfer increases and the
Nusselt number curve reaches a maximum.

With a constant heat flux the changes in the convective heat transfer also affect
the Rayleigh numbers as seen in figure 5(b). For the state of pure heat conduction
with Nu = 1 the terminal Rayleigh number Ra = 32 400 is obtained. This value is
indicated in figure 5(b) by a horizontal dash-dotted line and in figure 4 by the vertical
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dash-dotted line. In figure 4 it intersects the curve of the critical Rayleigh number at
M ≈ 1180. This is in good agreement with the results of the linear stability analysis.

The intensity of temperature fluctuations is characterized by the variances of the

temperature fluctuations T ′2P of the probe as shown in figure 5(c). It is affected
by the magnetic field in a similar way as the Nusselt number. Beyond M ≈ 700,
indicated in figure 5(a–e) by the vertical dashed line, the variance virtually vanishes
and the originally time-dependent flow undergoes a transition to laminar stationary
convection which still allows a significant convective heat transfer with Nu > 1 in the
region of stationary convection.

The evaluated integral time scale τI is plotted in figure 5(d ). The graph shows that
the dynamics of the flow become generally faster under the influence of the magnetic
field as the time scale is reduced.

The horizontal isotropy coefficient Axz is plotted in figure 5(e). It may explain the
non-monotonic behaviour of Rayleigh and Nusselt numbers as well as the intensity
of temperature fluctuations in the time-dependent region as a consequence of a
significant change in the local isotropy properties of the flow. With a relatively
moderate magnetic field corresponding to M ≈ 130 the horizontal isotropy coefficient
Axz immediately decreases to a very small value of about Axz ≈ 0.1 showing that
the flow becomes more and more two-dimensional, at least locally, in the sense that
convective flow structures become aligned with the magnetic field. Because of the
growing two-dimensional character of the flow, Joule dissipation is reduced compared
to three-dimensional flow and higher convective velocities may occur with higher
convective heat transport and stronger temperature fluctuations. This process seems
to be most significant for Hartmann numbers around M ≈ 300 where the local
maximum of the Nusselt number curve is observed. The slight increase of Axz in
the range M & 400 results from a relatively higher noise level for small temperature
fluctuations.

The quasi-two-dimensional character of the time-dependent convection, as sug-
gested by the isotropy coefficient Axz in figure 5(e), can further be reasoned from
the following scale considerations. The integral time scale as plotted in figure 5(d )
is assumed to be an indicator of a transport of temperature inhomogeneities over
a distance of the order of the layer height, O(h). It is seen from figure 5(d ) that τI
is O(1), i.e. it is comparable with the thermal diffusion time scale t0 during which a
temperature disturbance loses its identity by thermal diffusion. For turbulent MHD
flow Sommeria & Moreau (1982) describe the propagation of vorticity in the direction
of the magnetic field by a diffusion process based on a diffusivity α = σB2l2⊥/ρ, where
l⊥ is a typical length scale perpendicular to the magnetic field which in our case is
measured by the layer height h. The related diffusion time scale for an equalization
of velocities in two planes of distance d apart and perpendicular to the magnetic field
is then given by

τD =
ρ

σB2

d2

l2⊥
. (36)

This diffusion time scale was evaluated assuming for the relevant experimental length
scales l⊥ = h and d = 2b, and was normalized by the thermal diffusion time t0.
The data are plotted in figure 5 (d ) together with those for the integral time scale
τI . The graph shows that the diffusion time scale for the propagation of vorticity
along the magnetic field lines becomes smaller than the integral time scale for the
transportation of temperature perturbations for Hartmann numbers M & 200. This
may explain why a quasi-two-dimensional convective flow can be established under
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M Q = M2 B [T] 1/τ Rac Rac/Q Rac,e

0 0 0 0 1708 ∞ 2050
200 4.0× 104 0.15 36.6 3.65× 103 0.091 1870
400 1.6× 105 0.29 106.4 6.97× 103 0.044 6150
600 3.6× 105 0.43 209.5 1.14× 104 0.032 14600
800 6.4× 105 0.58 345.7 1.71× 104 0.027 21400

Table 1. Hartmann numbers M, Chandrasekhar numbers Q, approximate magnitudes of the
applied magnetic field B, magnetic damping parameter 1/τ, critical Rayleigh number for the onset
of convection obtained from quasi-two-dimensional theory Rac, the ratio Rac/Q and experimentally
determined values for the onset of convection Rac,e.
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Figure 6. Nusselt numbers Nu versus Rayleigh numbers Ra for OHD flow (M = 0) and MHD
flows for M = 200, 400, 600 and 800. The vertical solid lines indicate the critical Rayleigh numbers
Rac for the onset of convection calculated using the linear stability analysis in § 4.

the influence of a magnetic field in spite of the homogenizing effect of temperature
fluctuations.

6.2. Integral heat transfer and onset of convection

The convective heat transfer is investigated in a two parameter range of Rayleigh
and Chandrasekhar numbers. The heat flux applied to the layer is varied in the range
1.26 × 103 6 q 6 1.25 × 105 W m2 to cover the widest attainable range of Rayleigh
numbers 103 < Ra < 8 × 104. The effects of five Hartmann numbers, including
ordinary hydrodynamic (OHD) flow with M = 0 are investigated. The Hartmann
numbers M, the Chandrasekhar numbers Q, the approximate magnitudes of the
magnetic field B and the corresponding magnetic damping parameter 1/τ are listed
in table 1. The particular Hartmann numbers are indicated in figure 4 as circles.
Furthermore, the critical Rayleigh numbers for the onset of convection for two rigid
walls (see figure 2) Rac and the ratio Rac/Q are given.

In figure 6 the Nusselt numbers for the whole test matrix are plotted versus the
Rayleigh number. Here, the critical Rayleigh numbers Rac as calculated using the
linear stability analysis of § 4 for the onset of convection are indicated by vertical solid
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Figure 7. Nusselt numbers Nu versus Rayleigh numbers Ra at marginally supercritical conditions.
The symbols represent measurements for OHD flow (M = 0) and MHD flows for M = 200, 400,
600 and 800. The vertical solid lines at 1.01 < Nu < 1.075 display the experimentally determined
critical Rayleigh numbers for the onset of convection Rac,e which are connected to corresponding
vertical lines for Nu < 1 which display the critical Rayleigh numbers Rac for the onset of convection
as calculated using the linear stability analysis of § 4.

lines. The results for the different Hartmann numbers are obtained by systematically
decreasing the applied heat flux. Additionally the magnetic field was always adjusted
to its final value by decreasing it from higher values. Some indications of hysteresis
effects were observed but a systematic investigation was not performed. For OHD
flow (M = 0), the Nusselt numbers rise above the conductive level Nu = 1 beyond
the critical value of the Rayleigh number for onset of convection Rac = 1708 and
thereby indicate the onset of convective motions and the related heat transport. As
the Nusselt numbers of MHD flow level off at much higher Rayleigh numbers, there
is a clear increase of the critical Rayleigh number by the magnetic field. In order to
derive critical Rayleigh numbers from the experimental data, the Nusselt numbers
at marginally supercritical conditions are replotted in figure 7. Due to uncertainties
concerning the material properties used for the evaluation (see Burr & Müller 2001),
the Nusselt numbers do not approach the value Nu = 1, as the Rayleigh numbers
are decreased below critical conditions. Therefore, stable conditions corresponding to
the basic preconvective state are suggested where the Nusselt numbers maintain a
constant value on decreasing the Rayleigh number as indicated by the horizontal lines
(Nu > 1). We observe that except for the smallest Rayleigh number in OHD flow the
error in determining the Nusselt numbers at subcritical Rayleigh numbers is less than
6%. The horizontal error bars in figure 7 represent the uncertainty in determining
the Rayleigh number. They are determined from assuming an uncertainty of 5% in
the physical properties and a measurement error in the temperature difference of
0.2 K when calculating the Rayleigh number. The critical Rayleigh numbers Rac,e
are obtained from the intersection points of linear fitting curves to the marginally
supercritical Rayleigh numbers, plotted as straight lines, with the corresponding
horizontal lines indicating the basic state of conduction. The values thus obtained are
displayed in the region 1.075 < N < 1.01 as vertical solid lines. They are connected to
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the corresponding vertical lines in the region Nu < 1 which show the critical Rayleigh
numbers obtained from the stability analysis. The Rac,e values are also compiled
in table 1 and plotted in figure 4 as squares. For Hartmann number M = 400 and
higher the experimentally determined critical Rayleigh numbers agree reasonably well
with the predictions of the stability analysis of the quasi-two-dimensional theory and
so confirm the significance of the Hartmann walls as a source of increased Joule
dissipation. However, for small Hartmann numbers, i.e. M ' 200, of the theoretical
value of Rac is significantly greater than the observed one. Since even for M = 200
the ratio Ra/Q is still small, i.e. Rac/Q ≈ 0.1 (see table 1), this discrepancy cannot
be explained by the violation of assumption (13) made in § 3 for the validity of the
two-dimensional model equations. It might arise from an effect of side layers which
is not taken into account by the linear stability analysis. For small values of M . 200
the total thickness of the side layers is of the order of the layer height and this may
significantly reduce the effective region of the Hartmann layers at the vertical walls.
Thereby the overall Joule dissipation is reduced in the experiment, which results in
lower critical Rayleigh numbers.

For the high values Ra plotted in figure 6 the Nusselt number data for OHD
flow at Q = 0 can be fitted by the scaling law Nu = 1.403 × Ra0.250±0.004 valid for
104 > Ra > 105. The exponent is in agreement with the findings for Rayleigh–Bénard
convection in a layer of mercury with Pr ≈ 0.025 by Rossby (1969) who derived
from his measurements Nu = 0.147 × Ra0.257±0.004 (dotted line in figure 6). However,
although the Prandtl number of NaK is similar to that of mercury, the Nusselt
numbers in this experiment are determined as generally lower, which might be a
further indication of the uncertainties concerning the material properties used for the
evaluation.

When a magnetic field is applied to the liquid layer the behaviour of the Nusselt
numbers changes significantly. For a magnetic field corresponding to M = 200 the
Nusselt numbers increase at first as for OHD flow up to Ra ≈ 104 and Joule
dissipation seems to have no effect yet on the convective heat transport although the
intensity of the applied magnetic field is not small. At a Rayleigh number of about
Ra ≈ 104 the Nusselt number curve forms an intermediate plateau and thus shows that
starting from this value the convective heat transfer is significantly inhibited by the
magnetic field. Within the plateau region several states of heat transfer characterized
by different combinations of Ra and Nu are observed for the same applied heat
flux but different start-up conditions. Similar observations have been made recently
in other Rayleigh–Bénard convection experiments with different external constraints
(see e.g. Horanyi, Krebs & Müller 1999). The different states for the same set
of external control parameters may be explained by variations in the convective
flow pattern. Beyond Ra = 5 × 104 the Nusselt numbers steeply increase again but
remain well below the values for OHD convection. For the higher Hartmann number
M = 400 the onset of convection is observed to be significantly shifted to higher
Rayleigh numbers. Beyond the critical Rayleigh number the Nusselt number increases
steeply and overshoots even the values obtained for OHD convection. However, at
Ra ≈ 3.0 × 104 the convective heat transfer suddenly collapses to a much lower
level and does not recover within the range of Rayleigh numbers investigated here.
This unusual behaviour of the convective heat transfer is correlated with significant
changes in the convective flow structure, which may be concluded from the time
series of the local dimensionless temperature fluctuations T ′P measured by the probe
and presented in figure 11. This and further details of the temporal dynamics of the
natural convection will be discussed in § 6.3. For even higher Hartmann numbers
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Figure 8. Variances of temperature T ′2P recorded by the probe for OHD flow and MHD flows at
different Hartmann numbers M. The critical Rayleigh numbers for the onset of time-dependent
flow Rat are determined from the crosspoint of the fitting curves with the noise level.

M the Nusselt numbers exhibit the same behaviour as OHD convection, namely a
monotonic increase with increasing Rayleigh numbers. The most remarkable feature
of this heat transfer system is the heat transfer enhancement under the influence of
an external horizontal magnetic field of moderate intensity which conforms with the
local maximum of the Nusselt number in figure 5(a).

6.3. Temporal structures

From the linear stability analysis of § 4 it can be shown that the convection starts
as a stationary flow. Oscillatory convection originates from this state as a secondary
bifurcation. The marginal conditions for this transition are investigated experimentally

here by using the variances of the temperature fluctuations T ′2P recorded by the
probe as a measure of time dependence. In figure 8 the variances of all tests are
plotted versus the Rayleigh number. Additionally a curve indicating the noise level,
determined separately by thermally neutral instrumentation tests, scaling as Ra−2 is
displayed in the same figure. The points of intersection between the fitting curves
of measured variances and the noise level curve are taken as the experimentally
determined condition for the onset of time-dependent oscillatory flow characterized
by a second critical Rayleigh number Rat. These data points are plotted together
with their fitting curve on the stability map of figure 4. Between this fitting curve
and the curve of marginal stability an area of steady convection can be identified
which generalizes the previous finding of figures 5(b) and 5(c), namely the occurrence
of significant convective heat transfer in a range of high Hartmann number where
temporal fluctuations are suppressed by Joule and viscous dissipation. Above Rat a
strong increase of this measure to a saturation level with increasing Rayleigh numbers
can be observed for all Hartmann numbers. The saturation level of the variances is
highest for the OHD flow (M = 0).

The temporal behaviour beyond the second critical Rayleigh number Rat may be
characterized by the integral time scale τI as defined in equation (34). This time
scale is evaluated and displayed in figure 9 as a function of a reduced Rayleigh
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Figure 9. Integral time scales τI defined from equation (34) for Hartmann numbers M = 0, 200,
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Figure 10. Horizontal isotropy coefficent Axz plotted versus a reduced Rayleigh number
Rar = Ra− Rat for Hartmann numbers M = 0, 200 and 400.

number Rar = Ra − Rat. The graph shows that for increasing Rayleigh numbers
and more strongly under the influence of an external magnetic field the integral
time scale decreases, i.e. the fluctuation frequency increases. This observation is in
agreement with findings of Fauve et al. (1981) who report an increase of the oscillation
frequency with increasing Rayleigh numbers in their convection experiment under
the ordering effect of a horizontal magnetic field. They suggest that the increase of
the oscillatory instability frequency is associated with the suppression of the three-
dimensional oscillatory instability. The energy thus released is transferred to a higher
roll circulation velocity that results in faster dynamics of the flow.

Valuable information on the spatial structure of the time-dependent eddies is
obtained from the horizontal isotropy coefficients Axz plotted in figure 10 for OHD
flow M = 0 and the strong time-dependent MHD flows at Hartmann numbers
M = 200 and 400. In OHD flow values of approximately unity indicate horizontal
isotropy of the flow. In MHD flow the horizontal isotropy coefficients are significantly
smaller than for OHD flow in the region of large Rar and are further decreased from
higher Chandrasekhar numbers consistent with the concept of enhanced non-isotropy
at higher magnetic fields.

The temporal dynamics of Rayleigh–Bénard convection in a box of small aspect
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Figure 11. Time series of the dimensionless fluctuating part of temperature T ′P recorded by the
probe for MHD flow at M = 400. The Rayleigh number is increased from a case of stationary flow
shown in (a) to large supercritical conditions where time-dependent phenomena are dominant.

ratio and under the influence of a horizontal magnetic field have been investigated
by Libchaber, Laroche & Fauve (1982) and Libchaber, Fauve & Laroche (1983).
Their experiments were conducted for small intensities of the magnetic field and
moderate supercritical Rayleigh numbers and under extremely well controlled thermal
conditions. They observed highly ordered and complex oscillations with an ultimate
transition to chaotic temporal behaviour.

In our experiments two sets of temperature time series are recorded: one for a
fixed Hartmann number and varying Rayleigh number and the other for a fixed
Rayleigh number and varying Hartmann number. In figure 11(a–g) time series of
local temperature fluctuation T ′P at fixed Hartmann number M = 400 are displayed
for increasing Rayleigh numbers. No significant fluctuations are observed for the
lowest Rayleigh number Ra = 7022 (figure 11a) which is, according to table 1 and
figure 6, a state just above the onset of convection. For increasing Rayleigh numbers
regular temporal signals develop first. At Ra = 12879 (figure 11b) a quasi-harmonic
signal is obtained which becomes modulated in a sawtooth manner at Ra = 19058
(figure 11d ) on a time scale about 15 times longer than that of the basic oscillation.
On increasing the Rayleigh number to Ra = 27265 (figure 11e) the fluctuation signal
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Figure 12. Temperature fluctuations T ′P recorded by the probe. At constant Rayleigh number
Ra = 5.0×104 the magnetic field is increased from OHD flow (M = 0) to MHD flows at Hartmann
numbers M = 200, 400, 600 and 800.

returns to a mono-periodic, nearly harmonic behaviour. It is noteworthy that the
intensity of these temperature fluctuations amounts to about 40% of the driving
temperature difference across the layer and moreover that the periodic signal in
figure 11(e) corresponds to the local maximum of the Nusselt number in figure 6. If
the Rayleigh number is further increased, the regular temporal pattern disintegrates,
developing intermittencies at Ra = 30714 (figure 11f ) and finally chaotic and turbulent
behaviour at Ra = 65604 (figure 11g). The transition of the convective flow from
regular to chaotic temporal character is related to the drastic decrease of heat transfer
as indicated by the drop in the Nusselt number in figure 6. This observation suggests
that the heat transfer can be improved if the time-dependent flow becomes well
ordered under the influence of an external controlled parameter, here the magnetic
field.

In a second series of measurement long-term records (tm = 214 s) of temperature
time series are taken at a constant Rayleigh number Ra = 5.0 × 104 for OHD flow
with M = 0 and for MHD convection with Hartmann numbers M = 200, 400, 600
and 800. Parts of the time series are shown in figure 12. Starting from a chaotic
signal for M = 0 the flow undergoes a transition to more regular behaviour until for
M = 600 and 800 quasi-periodic temporal patterns appear, which for M = 600 show
some intermittencies and for M = 800 a bimodal feature.

The transition from an irregular chaotic, say turbulent, temporal behaviour to
an ordered quasi-periodic state is reflected well in the power density spectra of the
recorded signals. The spectra evaluated for different magnetic fields are shown in
figure 13. For OHD convection (M = 0) and for a weak magnetic field (M = 200)
the power spectra show a monotonic decrease with increasing frequencies. For OHD
convection the power decays in the high-frequency range like f−4, which agrees with
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the experimental findings of Horanyi et al. (1999) for Rayleigh–Bénard convection in
liquid sodium layers. The decay becomes faster for the case of weak magnetic fields
(M = 200 and 400), namely the power decays like f−5 in a frequency range of about
1 . f . 10 which is explained by the additional Joule damping effect. The monotonic
property of the power spectra is lost for even higher Hartmann numbers. As indicated
by the local maxima the power spectra accumulate around certain frequencies and
single and multiple peaks are observed. The number of identifiable frequencies seems
to increase with increasing intensity of the magnetic field, indicating the emergence
of well organized spatial structures in the convective flow.

Although the recordings of the embedded wall thermocouples (see figure 3) are
limited in intensity and frequency range because of the conductive damping of the
copper plate the power containing oscillations can be identified from the signal and
used for spatial correlations. In figure 14 the recordings of temperature fluctuations
of three thermocouples TN,b, TM,b and TS,b, embedded in the lower heated copper
plate and the probe are displayed for a weak (figure 14a) and a strong (figure 14b)
magnetic field intensity corresponding to M = 200 and 600 respectively. Notice that
the three wall thermocouples form a line parallel to the applied magnetic field. For
the weak field (M = 200) the signals are barely correlated whereas for the stronger
field intensity (M = 600) the signals are very well correlated. This observation is
expressed more precisely by the cross-correlation coefficients

Kij =
T ′i T ′j(

T ′2i T ′2j
)1/2

(37)

which are listed in table 2.
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Figure 14. Comparison of the fluctuating parts of the temperature signal T ′P obtained from the
probe (upper graphs) with fluctuating parts of the temperature signals obtained from three wall
thermocouples TN,b, TM,b and TS,b of the bottom wall (lower graphs). The three wall elements
form a line parallel to the magnetic field (see figure 3). (a) Ra = 3.6 × 104 and M = 600 and (b)
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M = 600 M = 200
Ra = 3.6× 104 Ra = 5.2× 104

Ki,j T ′N,b T ′M,b T ′S,b T ′P T ′N,b T ′M,b T ′S,b T ′P
T ′N,b 1 0.794 0.872 0.022 1 0.019 0.046 −0.032
T ′M,b 0.794 1 0.967 0.021 0.019 1 0.386 −0.030
T ′S,b 0.872 0.967 1 0.024 0.046 0.386 1 −0.026
T ′P 0.022 0.021 0.024 1 −0.032 −0.030 −0.026 1

Table 2. Cross-correlation coefficients Ki,j of temperature fluctuations as defined by equation (37)
obtained from the wall thermocouples TN,b, TM,b and TS,b and the probe T ′P for the same parameter
combinations as given in figure 14.

Significantly lower values are obtained for the weaker magnetic field intensity
(M = 200) which strongly support our conjecture that coherent two-dimensional
spatial structures are established in the direction of a strong enough externally
imposed horizontal magnetic field.
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7. Concluding remarks
For high-intensity horizontal magnetic fields and under appropriate boundary

conditions a liquid metal natural convective flow can be described by two-dimensional
model equations that take into account Joule dissipation, caused by Hartmann
braking at the walls perpendicular to the magnetic field, with a magnetic damping
parameter 1/τ. The crucial condition for the validity of such a quasi-two-dimensional
(Q2D) description of the flow is the requirement that the ratio between buoyant
and electrodynamic forces is small, i.e. Ra/Q � 1. A linear stability analysis of the
quasi-two-dimensional equations shows that the critical Rayleigh number for the
onset of convection is shifted to significantly higher values. In the limiting case of
negligible viscous dissipation the asymptotic law Rac = 4π2/τ is valid. Experiments
confirm the theoretical values for critical Rayleigh numbers with high accuracy
in the case of strong magnetic fields (Q > 400); for weaker magnetic fields the
theory overestimates the effect of magnetic damping and thus shows that the quasi-
two-dimensional description is not valid generally. At supercritical conditions, the
electrodynamic effects exert a significant influence on the convective heat transport.
Consistent with the stabilizing effect the Nusselt numbers are in general significantly
decreased by Joule dissipation. However, there are also regions of enhanced heat
transfer surpassing even that of OHD convection. The local isotropy coefficients of
the local temperature gradient measured by a probe in the midplane of the layer
show that the increase of convective heat transport goes along with the transition
of the convection pattern into an increasingly non-isotropic state of convection rolls
predominantly aligned with the magnetic field. The increasing two-dimensionality
generally reduces nonlinearities and the three-dimensional cascading process towards
smaller scales is inhibited. Instead, large-scale convective vortices are formed and
the temporal dynamics of the convective flow may become dominated by a few
superimposed or even one single frequency. Because of both the reduced Joule
dissipation of non-isotropic flow and the reduced viscous dissipation of the larger flow
structures, convective velocities as well as the convective heat transport are increased.

From the comparison of temperature recordings of three wall thermocouples that
are arranged in a line parallel to the magnetic field, the existence of coherent time-
dependent quasi-two-dimensional flow over a distance of ten times the height of the
layer is observed for strong magnetic fields and moderate Rayleigh numbers.

Although the intensity of temperature fluctuations at high supercritical Rayleigh
numbers may reach high values, comparable to those of OHD flow, there exists a
narrow range of stationary convection with significant convective heat transfer. This
may be significant for an application of horizontal magnetic fields to controlling
certain metallurgical processes such as crystal pulling from convecting melts.

The authors are grateful to Dr L. Barleon, Dr L. Bühler, Dr R. Stieglitz and
Professor A. Tsinober for useful discussions and comments. Special thanks are due to
Mr K.-J. Mack for his excellent technical assistance especially in running the super-
conducting magnet. All experiments have been performed in the MEKKA facility of
the Institut für Angewandte Thermo- und Fluiddynamik of the Forschungszentrum
Karlsruhe.

REFERENCES

Bühler, L. 1996 Instabilities in quasi-two-dimensional magnetohydrodynamic flows. J. Fluid Mech.
326, 125–150.

Burr, U., Barleon, L., Müller, U. & Tsinober, A. 2000 Turbulent transport of momentum and



Rayleigh–Bénard convection in liquid metal layers 369

heat in magnetohydrodynamic rectangular duct flow with strong sidewall jets. J. Fluid Mech.
406, 247–279.

Burr, U. & Müller, U. 2001 Rayleigh–Bénard-convection in liquid metal layers under the influence
of a vertical magnetic field. Phys. Fluids 13, 3247–3257.

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover.

Davidson, P. A. 1995 Magnetic damping of jets and vortices. J. Fluid Mech. 299, 153–186.

Fauve, S., Laroche, C. & Libchaber, A. 1981 Effect of a horizontal magnetic field on convective
instabilities in mercury. J. Physique-Lettres 42, L-455–L-457.

Fauve, S., Laroche, C., Libchaber, A. & Perrin, B. 1984 Chaotic phases and magnetic order in a
convective fluid. Phys. Rev. Lett. 52, L-211–L-216.

Foust, O. 1972 Sodium-NaK Engineering Handbook, Vol. 1. Gordon and Breach.

Horanyi, S., Krebs, L. & Müller, U. 1999 Turbulent Rayleigh–Bénard convection in low Prandtl-
number fluids. Intl J. Heat Mass Transfer 42, 3983–4003.

Horton, C. W. & Rogers, F. T. 1945 Convection currents in a porous medium. J. Appl. Phys. 16,
367–370.

Kishida, Y. & Takeda, K. 1994 Suppression of turbulent Bénard convection by horizontal D.C.
magnetic field. Proc. Intl Symp. on Electromagnetic Processing of Materials, October 25–28,
Nagoya, Japan, ISIJ (ed. S. Asai), pp. 80–85. The Iron and Steel Institute of Japan.

Lapwood, E. R. 1941 Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc. 44, 508–521.

Lehnert, L. & Little, N. C. 1956 Experiments on the effect of inhomogeneity and obliquity of a
magnetic field inhibiting convection. Tellus 9, 97–103.

Libchaber, A., Fauve, S. & Laroche, C. 1983 Two parameter study of the route to chaos. Physica
7D, 73–84.

Libchaber, A., Laroche, C. & Fauve, S. 1982 Period doubling cascade in mercury a quantitative
measurement. J. Physique-Lettres 43, L-211–L-216.

Lyon, R. N. 1952 Liquid Metals Handbook, 2nd edn. Washington, Atomic Energy Commission,
Department of the Navy Washington, DC.

O’Donnell, J. O., Papanicolaou, P. G. & Reed, C. B. 1989 The thermophysical and transport
properties of eutectic NaK near room temperature. Tech. Rep. Aragonne National Laboratory
ANL/FPP/TM–237.

Rossby, H. 1969 A study of Bénard convection with and without rotation. J. Fluid Mech. 36,
309–335.

Sommeria, J. & Moreau, R. 1982 Why, how and when, MHD turbulence becomes two-dimensional.
J. Fluid Mech. 118, 507–518.

Verron, J. & Sommeria, J. 1987 Numerical simulation of the two-dimensional turbulence experiment
in magnetohydrodynamics. Phys. Fluids 30, 732–739.

Walker, J. S. 1981 Magnetohydrodynamic duct flows in rectangular ducts with thin conducting
walls I. J. Méc. 20, 79–112.

Wesfreid, J., Pomeau, Y., Dubois, M., Normand, C. & Berge, P. 1978 Critical effects in Rayleigh–
Bénard-convection. Le Journal de Physique, 39, 725–731.


